Predicting Protein Backbone Chemical Shifts From Cα Coordinates: Extracting High Resolution Experimental Observables from Low Resolution Models
نویسندگان
چکیده
Given the demonstrated utility of coarse-grained modeling and simulations approaches in studying protein structure and dynamics, developing methods that allow experimental observables to be directly recovered from coarse-grained models is of great importance. In this work, we develop one such method that enables protein backbone chemical shifts (1HN, 1Hα, 13Cα, 13C, 13Cβ, and 15N) to be predicted from Cα coordinates. We show that our Cα-based method, LARMORCα, predicts backbone chemical shifts with comparable accuracy to some all-atom approaches. More importantly, we demonstrate that LARMORCα predicted chemical shifts are able to resolve native structure from decoy pools that contain both native and non-native models, and so it is sensitive to protein structure. As an application, we use LARMORCα to characterize the transient state of the fast-folding protein gpW using recently published NMR relaxation dispersion derived backbone chemical shifts. The model we obtain is consistent with the previously proposed model based on independent analysis of the chemical shift dispersion pattern of the transient state. We anticipate that LARMORCα will find utility as a tool that enables important protein conformational substates to be identified by “parsing” trajectories and ensembles generated using coarse-grained modeling and simulations.
منابع مشابه
HASH: a program to accurately predict protein Hα shifts from neighboring backbone shifts.
Chemical shifts provide not only peak identities for analyzing nuclear magnetic resonance (NMR) data, but also an important source of conformational information for studying protein structures. Current structural studies requiring H(α) chemical shifts suffer from the following limitations. (1) For large proteins, the H(α) chemical shifts can be difficult to assign using conventional NMR triple-...
متن کاملHigh-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the (13...
متن کاملFast high-resolution protein structure determination by using unassigned NMR data.
NMR spectroscopy provides high-resolution structural information of biomolecules in near-physiological conditions. Although significant improvements were achieved in NMR spectroscopy in the last 20 years, the increase in genome sequencing data has created a need for rapid and efficient methods of NMR-based structure determination. 3] NMR data acquisition can be accelerated significantly when se...
متن کاملProducing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains
Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a n...
متن کاملSuper-resolution of Defocus Blurred Images
Super-resolution is a process that combines information from some low-resolution images in order to produce an image with higher resolution. In most of the previous related work, the blurriness that is associated with low resolution images is assumed to be due to the integral effect of the acquisition device’s image sensor. However, in practice there are other sources of blurriness as well, inc...
متن کامل